Meandering Flows in the Oceanic and Atmospheric Boundary Layers due to Breaking Ocean Waves

https://www.researchgate.net/publication/344482927

Breaking waves generate meandering currents and winds in the oceanic and atmospheric boundary layers (Dommermuth et al., 2014). Meandering flows are revisited here for five types of breaking waves. Streaming flows are mean flows that include Eulerian and Lagrangian contributions. Meandering flows include both difference (streaming) and sum frequency interactions. Meandering flows, like streaming flows, have Eulerian and Lagrangian contributions. Normal to the free surface, the meandering flows exponentially attenuate away from the free surface with an oscillatory behavior. The magnitudes of the meandering flows agree with Langmuir’s original observations (Langmuir, 1938). The good agreement suggests that the formation of Langmuir circulations is due to meandering flows.… Read more

Magnetic Induction due to the Effects of Breaking Ocean Waves

https://www.researchgate.net/publication/344482876

Breaking waves generate meandering currents and winds in the oceanic and atmospheric boundary layers. The length scales and frequencies of the meandering currents and winds are respectively longer and higher than those of the underlying ocean waves. The difference in spatial and temporal scales makes it possible to indirectly measure the meandering current in the oceanic boundary layer using the principles of magnetic induction that would otherwise be difficult using more direct methods. Such measurements are desirable to quantify mixing in the oceanic and atmospheric boundary layers due to meandering flows.

The Generation of Electric Fields by Meandering Flows

https://www.researchgate.net/publication/344787449

Meandering flows are wave driven much like streaming flows. The interaction of the wavy portion of the flow with the vortical portion of the flow gives rise to meandering flows. Meandering flows, like streaming flows, are not turbulent. The nonlinear wave interactions give sum and difference frequencies in meandering flows. The difference frequencies have long been associated with streaming flows in the ocean (Longuet-Higgins, 1953). Meandering flows occur in the atmosphere as well as the ocean. Streaming flows are a subset of meandering flows. Meandering flows are expected to vary over long distances due to nonlinear wave interactions, variations in currents and winds, etc. In the upper ocean, (Dommermuth, 2020d) shows that slow variations of the meandering wind-drift interacting with the earth’s magnetic field induces a magnetic disturbance in the upper ocean and lower atmosphere. Dommermuth (2018b,c,d,e) show how the wind drift affects wave breaking. Here, the effects of variations in the meandering wind drift and meandering wind on the surface charge density are considered. Blanchard (1963); Gathman (1986) show that the surface charge density is due to the electrification of the atmosphere by (1) bubbles bursting on the ocean surface due to the effects of wave breaking and (2) sea spray torn off the crests of waves by wind shear. The variations in surface charge density are expected due to variations in wave breaking and wind shear occurring over long spatial scales due to meandering flows. This paper along with Dommermuth (2020d) provide experimentalists with bases for measuring effects of meandering flows on the magnetic and electric fields in the ocean and atmosphere. Experiments can be performed to confirm the existence of meandering flows and to quantify the mixing of the upper ocean and lower atmosphere. During fair weather the electric field that is generated by the effect of meandering flows on the surface charge density is about 10% of the potential gradient at altitudes 3km above the ocean surface. The effects of the electric disturbance attenuate slowly with altitude at a rate that is very similar to the potential gradient. The frequencies of oscillations are about 0.2-1Hz due to nonlinear sum-frequency wave interactions. During a storm the electric field that is generated by the meandering flows would become increasingly violent with significant energy being radiated within specific frequency bands in an organized manner.

The Ocean’s Heartbeat

https://www.researchgate.net/publication/347514163

The interaction of Stokes waves with log profiles of the wind in the atmosphere and the wind drift in the ocean is studied. Data assimilation is used to nudge the wavy portion of the base flow toward a Stokes wave and the vortical portion of the base flow toward log profiles. The data assimilation framework allows for free-surface vorticity and the turbulent diffusion of free-surface vorticity into the atmosphere and into the ocean for the vortical portion of the flow.

The results of numerical simulations show that coherent structures form on the free surface and diffuse upward into the atmosphere and downward into the ocean even in the absence of stratification. As the crests of the Stokes waves pass over the coherent structures, the amplitudes of the coherent structures abruptly increase and the phases of the coherent structures abruptly change. As the friction velocity in the water increases, the coherent structures surf the crests of steep Stokes waves. The resulting turbulent wakes that form behind the wave crests induce meandering flows with vertical structures that are helical in the atmosphere and the ocean. Cross sections of the meandering flows transverse to the wind form layers with a diagonal pattern that reflects the helical shedding into the wake. The successive passing of coherent structures beneath the wave crests gives rise to a multitude of spatial and temporal variations. In view of the important contributions that the coherent structures and meandering flows make to the mixing of the atmosphere and the ocean, the physics associated with these spatial and temporal variations are herein named the Ocean’s Heartbeat. As discussed in this paper, the Ocean’s Heartbeat can be heard using electromagnetic principles.

Windrows form at the interstices of the coherent structures even in the absence of breaking waves. As the steepnesses of the Stokes waves increase, the rate of lateral spreading of the windrows in- creases, and the windrows become more rectilinear, less sinuous, and less diffuse. The numerical simulations show good agreement for the following experimental observations: 1) Convergence zones form beneath windrows, 2) Divergence zones form between windrows, 3) Downwelling oc- curs beneath windrows; 4) Upwelling occurs between windrows; 5) Streamwise velocities are enhanced beneath windrows; 6) Streamwise velocities are diminished between windrows; and 7) Y-Junctions that point upwind form as windrows merge. Although Y-Junctions that point down- wind have been observed, their importance has not been previously recognized. The numerical results show that Y-Junctions that point downwind form as windrows split.

The kinetic energy of the coherent structures and meandering flows increases linearly with respect to time in correspondence with forced two-dimensional turbulence and the formation of an inverse energy cascade. Also, in correspondence with forced two-dimensional turbulence, the enstrophy of the vertical component of vorticity is constant on average in a surface-following coordinate system in planes that are parallel to the free surface in both the atmosphere and the ocean. The simulation with the longest duration shows evidence of energy condensation as the length scales of the coherent structures approach the size of the computational domain. The flux of energy into the vortical portion of the flow increases as the wave steepness increases. The flux of energy into the vortical portion of the flow also increases as the friction velocities in the atmosphere and ocean increase relative to the phase speed of the Stokes wave.

The linear growth rate of energy in the vortical portion of the flow is comparable to the initial exponential growth rate of wind-driven ocean waves for steep Stokes waves with intermediate age. The physical scales in this study correspond to a region where there is significant scatter in Plant (1982)’s wave-growth measurements for inverse wave ages less than u∗/c_o < 0.4, where u∗ is the friction velocity in the air and c_o is the phase speed of the Stokes wave. The inverse energy cascade can be so strong that modulation of the waves through a feedback mechanism occurs. As the waves are modulated by the vortical portion of the flow, the inverse energy cascade momentarily breaks down and then reestablishes itself. It is conjectured that growing seas jump back and forth between states of two and three-dimensional turbulence as is evident in the growth of energy and the oscillations in entrophy. During this phase, wave breaking occurs in such a manner that windrows do not break up, which supports Dommermuth (2020)’s conjecture that spilling breaking occurs in lanes. The spilling breaking waves and coherent structures work in concert to form windrows! Numerical simulations with larger domains are required to clarify the physics.

Preliminary results indicate that the growth rate of the kinetic energy in the vortical portion of the flow for fixed friction velocity in the water scales according to the turbulent diffusion of the initial free-surface vorticity, which is expressed in terms of a non-dimensional Ocean’s Heartbeat number, β_v ∼ R_H.  R_H = ω^s/(k^2ν^s) ≈ 500, where k is the wavenumber of the Stokes wave, ν^s is the two-dimensional eddy viscosity evaluated on the free surface, and ω^s is the initial vorticity on the free surface at the crest of the Stokes wave in an irrotational flow. For a steady flow, the initial free-surface vorticity is expressed in terms of the surface curvature (κ) and the total tangential velocity (u_t) evaluated on the free surface: ω_s = −2κ u_t. ω_s quantifies both the initial enstrophy for the initial boundary value problems starting from rest and the ongoing production of turbulence through interactions with shear. For variations of the wave friction velocity with fixed wave steepness, it is conjectured that conservation of wave action should be considered.

The Ocean’s Heartbeat number R_H reflects scaling in accordance with forced two-dimensional turbulence. The forcing here is provided by continuously nudging the wavy portion of the flow to an irrotational Stokes wave while the vortical portion of the flow is nudged toward log profiles in the atmosphere and the ocean. The effects of the friction velocities in the atmosphere and the ocean are included indirectly in the eddy viscosity.

The formation of Langmuir circulations is associated with an inverse energy cascade. The forma- tion of windrows with large lateral spreading is the manifestation of this inverse energy cascade. Meandering flows form large coherent structures in the atmosphere and ocean due to this inverse energy cascade. Meandering flows are fundamental mechanisms for mixing in the ocean and atmosphere over large spatial and temporal scales. The Ocean’s Heartbeat is an extraordinary mechanism by which the wavy portion of the flow strongly forces the vortical portions of the flow in the atmosphere and the ocean.

Research Papers and Reports

Langmuir Circulations and Meandering Flows

Windrows

The Ocean’s Heartbeat

Electric and Magnetic Fields of Meandering Flows

  • Dommermuth, D. G., “Magnetic Induction due to the Effects of Breaking Ocean Waves,” ResearchGate preprint, Oct 2020.
    https://www.researchgate.net/publication/344482876
  • Dommermuth, D. G., “The Generation of Electric Fields by Meandering Flows,” ResearchGate preprint, Oct 2020. https://www.researchgate.net/publication/344787449 (Please see more recent technical reports on the electric field that is induced by the transport of space charge density by the meandering wind.)
  • Dommermuth, D. G., “The Electric and Magnetic Fields due to the Transport of Space Charge Density by the Meandering Wind over the Ocean Surface,” ResearchGate preprint, Sep 2021. https://www.researchgate.net/publication/354665883 (Please see more recent technical reports on the electric field that is induced by the transport of space charge density by the meandering wind.)
  • Dommermuth, D.G., “The Electric and Magnetic Fields due to the Transport of Space Charge Density by the Meandering Wind over the Ocean Surface: New Evidence of an Inverse Energy Cascade in the Lower Atmosphere,” ResearchGate preprint, Sep 2021. https://www.researchgate.net/publication/354935485
  • Dommermuth, D.G., “The Electric and Magnetic Fields due to Magnetic Induction by Meandering Flows in the Oceanic and Atmospheric Boundary Layers: New Evidence of an Inverse Energy Cascade in the Upper Ocean,” ResearchGate preprint, Oct 2021. https://www.researchgate.net/publication/355215804
  • Dommermuth, D.G., “The Magnetic Fields due to Magnetic Induction by Meandering Drift Currents,” ResearchGate preprint, Oct 2021. https://www.researchgate.net/publication/355651651
  • Dommermuth, D.G., “A Parametric Study of the Electric Field in the Atmosphere due to the Transport of Space Charge Density by the Meandering Wind over the Ocean Surface,” ResearchGate preprint, Nov 2021. https://www.researchgate.net/publication/356002487

Maxima Scripts for Meandering Flows

  • Dommermuth, D.G., “Maxima Coding for Solving the Electric and Magnetic Fields due to the Transport of Space Charge Density over the Ocean Surface: New Evidence of an Inverse Energy Cascade in the Lower Atmosphere,” ResearchGate code, Sep 2021. https://www.researchgate.net/publication/354935522
  • Dommermuth, D.G., “A Maxima Script for Solving the Electric and Magnetic Fields due to Magnetic Induction by Meandering Flows in the Oceanic and Atmospheric Boundary Layers: New Evidence of an Inverse Energy Cascade in the Upper Ocean,” ResearchGate code, Oct 2021. https://www.researchgate.net/publication/355209396

Fortran Codes for Meandering Flows

  • Dommermuth, D.G., “A Fortran Code for Calculating Electric and Magnetic Fields due to the Transport of Space Charge Density by the Meandering Wind over the Ocean Surface: New Evidence of an Inverse Energy Cascade in the Lower Atmosphere,” ResearchGate code, Sep 2021. https://www.researchgate.net/publication/354935467
  • Dommermuth, D.G., “A Fortran Code for Calculating the Electric and Magnetic Fields due to Magnetic Induction by Meandering Flows in the Oceanic and Atmospheric Boundary Layers: New Evidence of an Inverse Energy Cascade in the Upper Ocean,” ResearchGate code, Oct 2021. https://www.researchgate.net/publication/355209298
  • Dommermuth, D.G., “F90 Coding for Calculating the Magnetic Fields due to Magnetic Induction by Meandering Drift Currents,” ResearchGate code, Oct 2021. https://www.researchgate.net/publication/355651566
  • Dommermuth, D.G., “F90 Coding for a Parametric Study of the Electric Field in the Atmosphere due to the Transport of Space Charge Density by the Meandering Wind over the Ocean Surface,” ResearchGate code, Nov 2021. https://www.researchgate.net/publication/356002311

The Effect of the Wind Drift on Wave Growth, Wave Breaking, and the Production of Turbulence

The Effect of Standing Waves on the Wave Energy Cascade

Helmholtz Decompositions into Wavy and Vortical Portions

  • Dommermuth, D. G., “The laminar interactions of a pair of vortex tubes with a free surface,” J. Fluid Mech., Vol. 246, 1993, pp. 91–115. https://doi.org/10.1017/S0022112093000059
  • Mui, R. C. and Dommermuth, D. G., “The vortical structure of a near-breaking gravity-capillary wave,” Journal of Fluids Engineering, Vol. 117, 1994,355–361. https://doi.org/10.1115/1.2817269
  • Dommermuth, D. G., Novikov, E.A., and Mui, C.Y., “The Interaction of Surface Waves with Turbulence,” The Proceedings of the Symposium on Free-Surface Turbulence, ASME Fluids Engineering Division Summer Meeting, Lake Tahoe, California, USA, 1994. https://www.researchgate.net/publication/271527603

Entrainment and Mixing due to Plunging Breaking Waves

Numerical Methods